Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
PICO bubble chambers have exceptional sensitivity to inelastic dark matter-nucleus interactions due to a combination of their extended nuclear recoil energy detection window from a few keV to O(100 keV) or more and the use of iodine as a heavy target. Inelastic dark matter-nucleus scattering is interesting for studying the properties of dark matter, where many theoretical scenarios have been developed. This study reports the results of a search for dark matter inelastic scattering with the PICO-60 bubble chambers. The analysis reported here comprises physics runs from PICO-60 bubble chambers using CF3I and C3F8. The CF3I run consisted of 36.8 kg of CF3I reaching an exposure of 3415 kg-day operating at thermodynamic thresholds between 7 and 20 keV. The C3F8 runs consisted of 52 kg of C3F8 reaching exposures of 1404 kg-day and 1167 kg-day running at thermodynamic thresholds of 2.45 keV and 3.29 keV, respectively. The analysis disfavors various scenarios, in a wide region of parameter space, that provide a feasible explanation of the signal observed by DAMA, assuming an inelastic interaction, considering that the PICO CF3I bubble chamber used iodine as the target material.more » « less
-
Free, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
The ALICE Collaboration reports measurements of the large relative transverse momentum ( ) component of jet substructure in and Pb-Pb collisions at center-of-mass energy per nucleon pair . Enhancement in the yield of such large- emissions in head-on Pb-Pb collisions is predicted to arise from partonic scattering with quasiparticles of the quark-gluon plasma. The analysis utilizes charged-particle jets reconstructed by the anti- algorithm with resolution parameter in the transverse-momentum interval . The soft drop and dynamical grooming algorithms are used to identify high transverse momentum splittings in the jet shower. Comparison of measurements in Pb-Pb and collisions shows medium-induced narrowing, corresponding to yield suppression of high- splittings, in contrast to the expectation of yield enhancement due to quasiparticle scattering. The measurements are compared to theoretical model calculations incorporating jet modification due to jet-medium interactions (“jet quenching”), both with and without quasiparticle scattering effects. These measurements provide new insight into the underlying mechanisms and theoretical modeling of jet quenching.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract This paper presents a study of the inclusive forward J/ψyield as a function of forward charged-particle multiplicity in pp collisions at$$ \sqrt{s} $$ = 13 TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relativeJ/ψyields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range |η|<1. The J/ψmesons are reconstructed via their decay intoμ+μ−pairs in the forward rapidity region (2.5< y <4). The relative multiplicity is estimated in the forward pseudorapidity range which overlaps with the J/ψrapidity region. The results show a steeper-than-linear increase of the J/ψyields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
